If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60+40t-4.9t^2=0
a = -4.9; b = 40; c = +60;
Δ = b2-4ac
Δ = 402-4·(-4.9)·60
Δ = 2776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2776}=\sqrt{4*694}=\sqrt{4}*\sqrt{694}=2\sqrt{694}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-2\sqrt{694}}{2*-4.9}=\frac{-40-2\sqrt{694}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+2\sqrt{694}}{2*-4.9}=\frac{-40+2\sqrt{694}}{-9.8} $
| 8n(6n+7)=9 | | -4(2m=5)-3m=35 | | x-28+2x-106+(1/3x)+14=180 | | -15-2x=-4 | | 7(x+4)=3+7x | | 2x+4-x=-3(x-5)+2 | | 3x^2+28x-60=0 | | 8/x=40/80 | | 0=7a-21 | | 2(5x-1)-7=(x-1)+5x-4x | | 40=9x5x= | | 3xx+5=2x+6 | | 2-3x2+3=7 | | x÷3+12=18 | | 14-w=9 | | 20-17z=19-14z+6 | | 5+3(y+2)=14 | | 0=1+2/9c-c | | 1000=21+15x | | -12-3x=18+3x | | 300-2p=P | | D+2x-5+2x=180 | | 15=s+14 | | -1/6x(6x+12)(x-2)=0 | | 7/2=21/n | | 30/4=60/x | | 36/3=144/n | | -10x^2-16x+42=0 | | 0.8x-8=3 | | 11w-9=5w+2(3w+1) | | .8x-8=3 | | 5(x+1)-2(7-2x)-3x=-1 |